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A B S T R A C T   

Background: Clinical prediction is integral to modern healthcare, leveraging current and historical medical data 
to forecast health outcomes. The integration of Artificial Intelligence (AI) in this field significantly enhances 
diagnostic accuracy, treatment planning, disease prevention, and personalised care leading to better patient 
outcomes and healthcare efficiency. 
Methods: This systematic review implemented a structured four-step methodology, including an extensive 
literature search in academic databases (PubMed, Embase, Google Scholar), applying specific inclusion and 
exclusion criteria, data extraction focusing on AI techniques and their applications in clinical prediction, and a 
thorough analysis of the collected information to understand AI’s roles in enhancing clinical prediction. 
Results: Through the analysis of 74 experimental studies, eight key domains, where AI significantly enhances 
clinical prediction, were identified: (1) Diagnosis and early detection of disease; (2) Prognosis of disease course 
and outcomes; (3) Risk assessment of future disease; (4) Treatment response for personalised medicine; (5) 
Disease progression; (6) Readmission risks; (7) Complication risks; and (8) Mortality prediction. Oncology and 
radiology come on top of the specialties benefiting from AI in clinical prediction. 
Discussion: The review highlights AI’s transformative impact across various clinical prediction domains, including 
its role in revolutionising diagnostics, improving prognosis accuracy, aiding in personalised medicine, and 
enhancing patient safety. AI-driven tools contribute significantly to the efficiency and effectiveness of healthcare 
delivery. 
Conclusion and recommendations: AI’s integration in clinical prediction marks a substantial advancement in 
healthcare. Recommendations include enhancing data quality and accessibility, promoting interdisciplinary 
collaboration, focusing on ethical AI practices, investing in AI education, expanding clinical trials, developing 
regulatory oversight, involving patients in the AI integration process, and continuous monitoring and 
improvement of AI systems.   

Introduction 

The field of clinical prediction is a cornerstone of modern healthcare. 
This process involves the use of current and historical medical data to 
forecast future health outcomes [1]. Clinical prediction helps in the 
early detection and prevention of diseases, enhancing the accuracy of 
diagnoses, and improving treatment planning. This results in better 
patient outcomes and improved efficiency of healthcare systems [2,3]. 
By processing extensive and complex medical data quickly and with 
high precision, Artificial intelligence (AI) algorithms can identify 

patterns and correlations that might be beyond the scope of human 
analysis. These algorithms are designed to continuously learn and 
improve from new data, which enhances their predictive accuracy over 
time [2,3]. By thoroughly analysing medical images, lab results, and 
patient histories, AI can identify signs of diseases such as cancer or 
cardiovascular disorders more accurately and at an earlier stage than 
traditional methods [4]. AI is instrumental in the advancement of per-
sonalised medicine. It helps doctors understand how different diseases 
progress in individual patients and predicts how they might respond to 
various treatments. This leads to more tailored treatment plans, 
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maximising effectiveness while minimising potential side effects [5]. 
Furthermore, AI plays a vital role in risk assessment. It can identify 
patients who are at high risk of developing certain conditions based on 
genetic, lifestyle, and environmental factors. This enables the imple-
mentation of preventive measures delaying the onset of diseases [6]. 

AI also assists in predicting patient readmission risks and potential 
complications during medical and surgical procedures. This helps in 
planning and patient counselling, improving overall patient safety [7]. 
Moreover, AI’s ability to predict mortality risks in critical and palliative 
care settings is invaluable. It helps in making crucial decisions regarding 
the intensity of treatment and end-of-life care, ensuring that patients 
receive appropriate and compassionate care tailored to their individual 
needs [8].Therefore, AI’s integration into clinical prediction represents 
a significant leap forward in healthcare. Its ability to analyse and 
interpret vast amounts of medical data not only improves the accuracy 
of predictions but also personalizes patient care, enhances treatment 
effectiveness, and promotes preventive healthcare [9]. Accordingly, this 
systematic review seeks to extensively examine AI’s role in enhancing 
clinical prediction functions. It focuses on identifying key areas, and 
clinical specialties, where AI enhances clinical prediction. This is 
essential for assessing AI’s readiness for broader adoption, identifying 
research gaps, and guiding future research and development. 

Methods 

To conduct this systematic review, a structured four-step method-
ology was implemented to ensure a comprehensive and meticulous ex-
amination of relevant literature. The initial step included an extensive 
search across several academic databases including PubMed, Embase, 
and Google Scholar. The focus was on articles published in English from 
2019 onwards, using keywords such as "artificial intelligence," "clinical 
prediction," "healthcare analytics," "predictive modelling," and "patient 
outcomes." This search aimed to gather peer-reviewed articles and pri-
mary studies that explored the use of AI in clinical prediction scenarios. 
The second step involved the development and application of specific 
inclusion and exclusion criteria. Studies were selected if they primarily 
investigated AI’s role in enhancing clinical prediction, focusing on as-
pects like predictive accuracy, patient outcomes, and decision-making 
processes. Excluded were studies not centrally concerned with clinical 
prediction, those lacking empirical data, or with ambiguous methodol-
ogies. In the third step, relevant data were extracted from the selected 
studies, concentrating on the primary AI techniques used, significant 
findings, specific applications in clinical prediction, and the observed 
limitations and future recommendations. This data was then aggregated 
to highlight crucial areas where AI contributes to clinical prediction, 
identifying trends, barriers, and potential for further application in 
healthcare. The final step involved a thorough analysis of the collated 
information. This analysis aimed to clarify the roles of AI in enhancing 

Fig. 1. PRISMA flowchart of study selection and inclusion process.  
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clinical prediction, noting the improvements in prediction accuracy, 
efficiency, and patient outcomes. Additionally, the analysis addressed 
the challenges in implementing AI in this field, including ethical im-
plications, data security issues, and the integration with existing clinical 
workflows. 

Results 

Searching PubMed, Google Scholar, and Embase, 524 studies were 
found. After removing duplicates, 343 unique studies were identified. 
When inclusion and exclusion criteria were applied, 102 studies were 
excluded after title screening and another 138 were excluded after ab-
stract screening. After full-text examination, 74 studies, out of 103, were 
included. Fig. 1 shows the study selection and inclusion processes. 

Through careful qualitative analysis, this systematic review identi-
fied eight domains where AI has the potential to significantly enhance 
clinical prediction. The first domain, Diagnosis, involves a critical aspect 
of medical care; predicting the presence or absence of a disease or 
condition. This is done by analysing symptoms, clinical tests, and other 
patient data. Effective diagnostic predictions are crucial for early 
detection and timely treatment of diseases and medical conditions [9, 
10]. Among the included 74 studies, 24 discussed the role of AI-based 
clinical prediction for diagnosis. The second domain, Prognosis, is cen-
tred around predicting the likely course and outcomes of a disease or 
condition once diagnosed. This knowledge helps healthcare pro-
fessionals in devising more effective treatment plans and providing pa-
tients with realistic expectations about their conditions [2,11]. This 
domain was discussed by 38 studies. In the third domain, Risk Assess-
ment, the focus shifts to predicting the likelihood of a patient developing 
a disease or condition in the future. This prediction is based on various 
factors such as genetics, lifestyle, environmental exposures, and existing 
health conditions. Accurate risk assessment is pivotal in preventive 
medicine and health promotion, allowing for early interventions that 
can significantly alter a patient’s health trajectory [12,13]. This domain 
was discussed by 14 studies. The fourth domain, Treatment Response, go 
deeper into the area of personalised medicine. Here, the aim is to predict 
how a patient will respond to a specific treatment or therapy. This is 
particularly important as it helps in tailoring treatments to individual 
patients, known also as personalised medicine, thereby enhancing the 
effectiveness of therapeutic interventions and reducing the likelihood of 
adverse reactions [14,15]. This domain was discussed by 22 studies. 

Disease Progression, the fifth domain, is crucial for managing 
chronic diseases such as diabetes, heart disease, and neurological dis-
orders. Predicting how a disease will progress over time assists health-
care professionals in planning long-term treatment strategies and 
anticipating future care needs, ultimately improving the quality of life 
for patients with chronic conditions [2,16]. This domain was discussed 
by nine studies. The sixth domain, Readmission Risks, utilizes predictive 
models to identify patients who are at high risk of being readmitted to 
the hospital after discharge. This knowledge enables healthcare pro-
viders to offer targeted interventions, aiming to reduce readmission 
rates, which is a key indicator of quality healthcare [17,18]. This 
domain was discussed by three studies. In the seventh domain, 
Complication Risks, the focus is on predicting the risk of complications, 
both during and after medical procedures or treatments [19,20]. This 
domain was discussed by nine studies. Finally, the eighth domain, 
Mortality Prediction, is particularly relevant in critical care and pallia-
tive care settings. Predicting the risk of mortality is important for 
decision-making regarding the intensity of treatment and end-of-life 
care planning [21,22]. This domain was discussed by 20 studies. 

Table 1 and Fig. 2 show the eight domains where AI supports clinical 
prediction. Table 2 shows mapping of the 74 studies to the identified 
eight domains of AI-based clinical prediction. Accordingly, Fig. 3 shows 
the potential contribution of the AI to clinical prediction domains. Table 
4 and 5, in the Appendix, show the detailed extracted information from 
the 74 studies, regarding their objectives, design, speciality, sample size, 

population and settings, intervention and exposure, outcome measures, 
AI or machine learning model used, key findings, limitations, and con-
clusions. n addition to the eight domains identified, the analysis of the 
74 studies showed that Oncology and Radiology come on top of the 
specialties where AI enhances clinical prediction. Table 3 and Fig. 4 
show the medical specialties discussed in the 74 studies. 

Discussion 

Domain one: diagnosis 

Diagnosis is a vital aspect of medical care where the goal is to 
accurately predict the presence or absence of diseases or medical con-
ditions [9,10]. AI algorithms, particularly those utilising machine 
learning and deep learning, can analyse complex and vast datasets more 
quickly and accurately than traditional methods. For instance, in med-
ical imaging, AI can detect minor and complex patterns in X-rays, MRI, 
and CT scans that might be missed by the human eye. This capability is 
especially crucial in identifying early stages of diseases like cancer, 
where early intervention can substantially improve prognosis [4,97]. 
Moreover, AI-driven diagnostic tools are being integrated into primary 
care and telemedicine. These tools can assist healthcare professionals in 
making quick and accurate diagnoses by analysing symptoms reported 
by patients and comparing them with large medical datasets. This can 
make quality medical care more accessible, especially in remote or un-
derserved areas [98]. AI in diagnostics also holds promise in personal-
ised medicine, where it can help in identifying genetic markers and 
other specific factors that influence disease manifestation and progres-
sion [6,99]. 

Table 1 
The AI eight domains for clinical prediction.  

SN Domains Functions 

1 Diagnosis Predicting the presence or absence of a disease or 
condition based on symptoms, clinical tests, and other 
patient data. Diagnostic predictions are essential for early 
detection and timely treatment. 

2 Prognosis Predicting the likely course and outcome of a disease or 
condition once it has been diagnosed. Prognostic 
predictions help in understanding the disease’s 
progression, potential complications, and the likely 
response to treatment. 

3 Risk Assessment Predicting the likelihood of a patient developing a 
disease or condition in the future based on various risk 
factors such as genetics, lifestyle, environmental 
exposures, and existing health conditions. 

4 Treatment 
Response 

Predicting how a patient will respond to a particular 
treatment or therapy. This is especially important in 
personalised medicine, where the goal is to tailor 
treatments to individual patients for maximum 
effectiveness. 

5 Disease 
Progression 

Predicting how a disease will progress over time is crucial 
for chronic diseases such as diabetes, heart disease, and 
neurological disorders. It helps in planning long-term 
treatment strategies and anticipating future care needs. 

6 Readmission 
Risks 

Hospitals and healthcare providers use predictive models 
to identify patients who are at high risk of being 
readmitted after discharge. This helps in providing 
targeted interventions to reduce readmission rates. 

7 Complication 
Risks 

Predicting the risk of complications, both during and 
after medical procedures or treatments, is vital for 
informed consent and for planning to mitigate those 
risks. 

8 Mortality 
Prediction 

In critical care and palliative care settings, predicting the 
risk of mortality is important for decision-making 
regarding treatment intensity and end-of-life care 
planning.  
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Domain two: prognosis 

Prognosis involves predicting the future course and outcomes of a 
disease or condition after diagnosis [2,11]. In this domain, AI plays a 
transformative role. By leveraging large datasets and advanced algo-
rithms, AI can identify patterns and correlations that may not be 
immediately apparent to human clinicians. This includes analysing 
progression trends of diseases, response rates to various treatments, and 
historical patient outcomes data. AI systems can also incorporate a wide 
range of variables, from genetic information to lifestyle factors, 
providing a more holistic and accurate prognosis [100]. For chronic and 
degenerative diseases like cancer, heart disease, and neurological dis-
orders, AI-driven prognosis is particularly beneficial. It helps in under-
standing how these diseases are likely to progress over time, enabling 
healthcare providers to anticipate future complications and adjust 
treatment strategies accordingly. This proactive approach in managing 
chronic diseases can significantly improve patient quality of life and 
reduce long-term healthcare costs [101]. AI in prognosis also assists in 
personalised medicine. By understanding an individual patient’s disease 
trajectory, treatments can be better tailored to their specific needs, 
improving efficacy and minimising adverse effects. This personalization 
is especially important in conditions with high variability in outcomes 
among patients [99]. 

Domain three: risk assessment 

The risk assessment is a crucial domain in healthcare focusing on 
evaluating the probability of individuals developing a disease or con-
dition in the future [12,13]. AI has become an indispensable tool in 
refining risk assessment. AI algorithms can process and analyse vast 
amounts of data, identifying risk factors and patterns that may not be 
immediately evident. For example, machine learning models can anal-
yse genetic data alongside lifestyle and environmental factors to predict 
the risk of developing conditions like heart disease, diabetes, or certain 
types of cancer. This holistic approach provides a more comprehensive 
risk profile for each individual [4,9,102]. Moreover, AI-driven risk 
assessment is pivotal in public health initiatives. It aids in identifying 
populations at high risk for certain diseases, enabling targeted preven-
tive measures and resource allocation. This approach is particularly 
effective in managing and preventing chronic diseases, which are a 
major challenge for global health systems [103]. AI in risk assessment 
also plays a role in personalised health recommendations. By 

understanding individual risk profiles, healthcare providers can offer 
tailored advice on lifestyle modifications, screening, and preventive 
measures. This personalised approach not only improves individual 
health outcomes but also contributes to more efficient and effective 
healthcare systems [104]. 

Domain four: treatment response 

The treatment response is an essential facet of modern healthcare, 
focusing on predicting how patients will respond to specific treatments 
or therapies [14,15]. By leveraging advanced algorithms and large 
datasets, AI can analyse various factors that influence a patient’s 
response to treatment. These factors include genetic makeup, 
biochemical parameters, lifestyle habits, and the presence of other 
health conditions. For instance, in oncology, AI models can predict how 
a cancer patient might respond to a particular chemotherapy regimen 
based on their genetic profile and the genetic characteristics of their 
tumour [105]. This predictive capability is not just limited to pharma-
cological treatments. AI systems are also being used to anticipate re-
sponses to surgical procedures, radiation therapy, and other medical 
interventions. This helps healthcare professionals in selecting the most 
appropriate treatment plan for each patient, maximising efficacy and 
reducing the risk of complications [106]. Furthermore, AI-driven 
treatment response prediction is instrumental in drug development. It 
enables researchers to identify which patient groups are most likely to 
benefit from new drugs, thereby facilitating more targeted and efficient 
clinical trials [107]. 

Domain five: disease progression 

Disease Progression is a vital area in healthcare, especially for 
managing chronic conditions such as diabetes, heart disease, and 
neurological disorders [2,16]. AI has a significant impact in this area, 
offering advanced tools for monitoring and predicting disease progres-
sion. AI algorithms, particularly those using machine learning, can 
analyse large and complex datasets, including clinical records, patient 
histories, and biomedical data. This analysis helps in identifying pat-
terns and markers that indicate the progression of a disease, sometimes 
even before clinical symptoms become apparent [108,109]. For 
instance, in the case of neurodegenerative diseases like Alzheimer’s, AI 
can detect subtle changes in brain imaging or cognitive function tests 
that might predict the rate at which the disease will progress [110]. 

Fig. 2. AI supports eight domains of clinical prediction.  
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Table 2 
Mapping the 74 studies to the eight clinical prediction domains.  

SN Study Diagnosis Prognosis Risk 
Assessment 

Treatment 
Response 

Disease 
Progression 

Readmission 
Risks 

Complication 
Risks 

Mortality 
Prediction 

1 Wang et al., 2021 [23] 

2 Ma et al., 2022 [24] 

3 Huang et al., 2022 [25] 

4 Fremond et al., 2023 [26] 

5 Xu et al., 2021 [27]  

6 Qin et al., 2021 [28] 

7 Salah et al., 2021 [29]    

8 Shu et al., 2022 [30] 

9 Yue et al., 2022 [31]    

10 Zhang et al., 2021 [32] 

11 Groos et al., 2022 [33] 

12 Howell et al., 2021 [34]   

13 Wen-Zhi et al., 2022 [35] 

14 Cui et al., 2022 [36]  

15 Li et al., 2022 [37]  

16 Zhong et al., 2024 [38]  

17 Liu et al., 2022 [39]   

18 Feng et al., 2021 [40] 

19 Yagi et al., 2022 [41]  

20 Min et al., 2021 [42]    

21 El-Sappagh et al., 2021  
[43] 

22 Arabyarmohammadi et al., 
2022 [44]   

23 Liu et al., 2022 [45]  

24 Salari et al., 2023 [46]    

25 Wen et al., 2023 [47] 

26 Liu et al., 2021 [48] 

27 Liu et al., 2023 [49]  

28 Li et al., 2023 [50]  

29 Xia et al., 2023 [51]  

30 Vodencarevic et al., 2021  
[52]  

31 Li et al., 2022 [53] 

32 Verma et al., 2022 [54]  

33 Hae et al., 2023 [55]   

34 Lee et al., 2022 [56]        

(continued on next page) 
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Table 2 (continued ) 

SN Study Diagnosis Prognosis Risk 
Assessment 

Treatment 
Response 

Disease 
Progression 

Readmission 
Risks 

Complication 
Risks 

Mortality 
Prediction 

35 Kong et al., 2023 [57] 

36 Sundar et al., 2022 [58]  

37 Sun et al., 2022 [59] 

38 Zhang et al., 2022 [60]        

39 Fan et al., 2022 [61] 

40 Ou et al., 2022 [62]  

41 Luo Y et al., 2023 [63]  

42 Huang J et al., 2022 [64] 

43 Yin P et al., 2023 [65]  

44 Zhang Z et al., 2023 [66]        

45 Cheng M et al., 2023 [67]    

46 Kao YT et al., 2023 [68]   

47 Saux P et al., 2023 [69]  

48 Li J et al., 2023 [70]  

49 Faraone SV et al., 2022  
[71]    

50 Zhang K et al., 2023 [72]  

51 Cai ZH et al., 2023 73] 

52 Wang Y et al., 2023 74]   

53 Bao Z et al., 2021 75]  

54 Li P et al., 2023 76]       

55 Liu Y et al., 2023 77]  

56 Xie N et al., 2023 78]  

57 Chen X et al., 2023 79]   

58 Forrest LN et al., 2023 80]    

59 Tan TH et al., 2021 81] 

60 Chandra RS et al., 2023 82]  

61 Jin Y et al., 2023 83]  

62 Su Z et al., 2023 84]   

63 Liu Y et al., 2023 85]  

64 Wu Y et al., 2023 86] 

65 Zhang K et al., 2022 87] 

66 Tran QNN et al., 2023 88]  

67 Zhang H et al., 2023 89] 

68 Ma X et al., 2023 90] 

(continued on next page) 
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Similarly, in diabetes management, AI models can analyse blood sugar 
levels, lifestyle factors, and treatment responses to predict potential 
complications and guide adjustments in treatment plans [111,112]. AI’s 
predictive capabilities in disease progression are not just limited to 
direct health outcomes. They also extend to predicting the impact of the 
disease on a patient’s quality of life, daily functioning, and mental 
health. This comprehensive approach allows healthcare providers to 
offer more holistic and patient-centred care [113,114]. 

Domain six: readmission risks 

Readmission Risks addresses a critical challenge in healthcare: 
identifying patients who are at high risk of being readmitted to the 
hospital shortly after discharge. This domain is particularly significant 
because high readmission rates are often indicators of suboptimal care 
and can lead to increased healthcare costs [17,18]. AI plays a pivotal 
role in assessing readmission risks. By analysing extensive datasets, 
including patient medical histories, treatment details, discharge condi-
tions, and socio-demographic factors, AI algorithms can identify pat-
terns and risk factors associated with higher chances of readmission. 
This information is crucial for healthcare providers to intervene proac-
tively [115]. For example, AI can help in identifying patients who might 
need additional support post-discharge, such as those with chronic 
conditions like heart failure or diabetes, or elderly patients with multiple 
health issues. Accordingly, healthcare teams can implement targeted 
strategies such as arranging follow-up appointments, providing addi-
tional patient education, and ensuring proper medication management 
[116]. Moreover, AI-driven insights into readmission risks enable hos-
pitals to allocate resources more efficiently, focusing on high-risk pa-
tients while optimising care for those with lower risks. This targeted 
approach not only improves patient care but also reduces unnecessary 
hospitalizations, thereby alleviating the financial strain on healthcare 

systems [117]. 

Domain seven: complication risks 

Complication Risks is focused on predicting the likelihood of com-
plications arising during or after medical procedures or treatments. This 
predictive capability is crucial for enhancing patient safety and 
improving care outcomes [19,20]. By analysing diverse data sets, 
including patient medical histories, the specifics of their current medical 
conditions, details of planned procedures, and even broader de-
mographic data, AI algorithms can identify patterns and risk factors that 
might lead to complications. This could range from post-surgical in-
fections to adverse reactions to medications or treatments [118,119]. 
For instance, in surgical settings, AI can evaluate a patient’s risk of 
complications based on factors like age, underlying health conditions, 
and the nature of the surgery. This information is invaluable for sur-
geons and medical teams in planning and executing surgical in-
terventions, allowing them to take preemptive measures to minimise 
risks [120]. Furthermore, AI-driven predictions are vital for informed 
consent processes. By providing more accurate information about po-
tential risks, healthcare providers can ensure that patients are better 
informed about the procedures they are undergoing, leading to 
improved patient satisfaction and trust [121]. 

Domain eight: mortality prediction 

Mortality Prediction is a sensitive yet crucial aspect of healthcare, 
particularly relevant in critical care and palliative care settings. This is 
essential for making informed decisions regarding treatment intensity 
and end-of-life care planning [21,22]. By analysing complex and 
comprehensive data sets, including patient medical histories, current 
health status, treatment responses, and even genetic information, AI 

Table 2 (continued ) 

SN Study Diagnosis Prognosis Risk 
Assessment 

Treatment 
Response 

Disease 
Progression 

Readmission 
Risks 

Complication 
Risks 

Mortality 
Prediction 

69 Li D et al., 2023 91]  

70 Le Y et al., 2023 92]  

71 Zhang H et al., 2023 93]  

72 Etter JF et al., 2023 94]      

73 Lyu Z et al., 2023 95]  

74 Huang J et al., 2023 96]  

Studies discussing each domain 24 38 14 22 9 3 9 20 
= Discussed domains in the 74 studies.    

Fig. 3. AI contribution to clinical prediction domains, based on the 74 studies.  
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algorithms can identify patterns and indicators that may signify a higher 
risk of mortality. This predictive capability is particularly important in 
intensive care units, where rapid decision-making is often required 
[122]. AI’s contribution to mortality prediction is not just about iden-
tifying those at highest risk; it also involves ensuring that patients 
receive appropriate levels of care. For instance, in cases where recovery 
is unlikely, such as patients with advanced stages of cancers, AI can help 
in recognising the need to shift from aggressive treatments to palliative 
care, focusing on the quality of life and comfort [123]. Moreover, 
AI-enabled mortality predictions are crucial for resource allocation in 
healthcare. Understanding which patients are most at risk helps in pri-
oritising care and making critical decisions about the allocation of 
intensive care resources, especially in situations like pandemics or other 
health crises [124]. 

Technology landscape and innovations 

The technology landscape associated with AI in clinical prediction 
spans various sophisticated techniques, notably Machine Learning (ML), 
Deep Learning (DL), and Natural Language Processing (NLP) [125]. 
Technological innovation in AI-supported clinical prediction, specif-
ically through the application of Deep Learning Techniques and Large 
Language Models (LLMs), represents a significant leap forward in the 
medical field’s capacity to diagnose diseases, predict outcomes, and 
tailor treatments to individual patients. Deep learning algorithms excel 
in analysing complex, large-scale datasets, including medical imaging, 

genetic sequences, and electronic health records, uncovering patterns 
and anomalies that might be overlooked by traditional analytical 
methods [126]. This capability is crucial for early detection of diseases 
such as cancer, where timely intervention can dramatically improve 
prognosis. On the other hand, LLMs, such as GPT and BERT, have 
transformed the way medical professionals interpret vast amounts of 
unstructured text data, from clinical notes to medical research papers, 
enabling a deeper understanding of patient conditions and the medical 
landscape at large [127]. These advancements not only enhance diag-
nostic accuracy and prognostic predictions but also facilitate a more 
personalized approach to healthcare, aligning treatments with individ-
ual patient profiles for optimal outcomes. This synergy between AI 
technologies and medical expertise is paving the way for a future where 
healthcare is more efficient, effective, and patient-centred [6,9]. 

Conclusion and recommendations 

AI has significantly advanced clinical prediction through its ability to 

Table 3 
Specialties where AI supports clinical prediction, based on the 74 
studies.  

Speciality Number of studies 

Oncology 32 
Radiology 23 
Neurology 11 
Surgery 10 
Cardiology 8 
Pulmonology 5 
Critical care medicine 4 
Orthopaedics 4 
Geriatrics 3 
Psychiatry 3 
Gerontology 3 
Rheumatology 3 
Gastroenterology 3 
Urology 2 
Infectious diseases 2 
Pathology 2 
Hepatology 2 
Emergency medicine 2 
Ophthalmology 2 
Genetics 1 
Psychology 1 
Vascular medicine 1 
Otolaryngology 1 
Hospital management 1 
Epidemiology 1 
Public health 1 
Addiction medicine 1 
Diabetes 1 
ADHD 1 
Infectious disease 1 
Dermatology 1 
Bariatric surgery 1 
Gynaecology 1 
Trauma 1 
Pain management 1 
Endocrinology 1 
Haematology 1 
Neurosurgery 1 
Clinical research 1 
Paediatrics 1 
Behavioural science 1  

Fig. 4. Specialties where AI supports clinical prediction, based on the 
74 studies. 
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process complex datasets. In diagnostics, AI enhances early disease 
detection accuracy, facilitating timely interventions. It aids in prognosis 
by predicting disease progression and outcomes, supporting more 
effective treatments. AI’s analysis of various factors improves risk 
assessment for disease development, essential in preventive medicine. In 
personalised medicine, AI is key in predicting treatment responses, 
customising care to individual needs. It’s also beneficial in managing 
chronic diseases, anticipating progression for proactive care. AI tools 
identify patients with high readmission risks, supporting targeted in-
terventions, and improve complication risk predictions to enhance pa-
tient safety. Furthermore, AI offers critical insights in mortality 
prediction. 

Based on the findings of this review, the following eight recom-
mendations are proposed to optimise the integration of AI in clinical 
prediction. (1) Enhance Data Quality and Accessibility: Ensure the 
collection of high-quality, diverse, and comprehensive healthcare data 
to train AI models effectively. Improved data sharing protocols should 
be established to facilitate access to diverse datasets while maintaining 
patient privacy and data security. (2) Promote Interdisciplinary 
Collaboration: Encourage collaboration between AI experts, healthcare 
professionals, and researchers. This collaboration will foster the devel-
opment of AI tools that are clinically relevant and user-friendly for 
healthcare providers. (3) Focus on Ethical and Transparent AI Practices: 
Develop AI systems with ethical considerations and transparency. This 
includes addressing biases in AI algorithms, ensuring equitable health-
care delivery, and maintaining transparency in AI decision-making 
processes. (4) Invest in AI Education and Training: Provide education 
and training for healthcare professionals on AI tools and their applica-
tions in clinical prediction. This will enhance their ability to interpret AI- 
generated predictions and integrate them into clinical practice. (5) 
Expand Clinical Trials and Research: Conduct extensive clinical trials to 
validate the efficacy and safety of AI applications in clinical prediction. 
Further research should also focus on exploring the potential of AI in 
unexplored areas of healthcare. (6) Regulatory Oversight and Guide-
lines: Develop and implement regulatory frameworks and guidelines to 
govern the use of AI in clinical prediction. This will ensure that AI tools 
meet quality and safety standards before their clinical implementation. 
(7) Patient Engagement and Consent: Involve patients in the AI inte-
gration process, ensuring they are informed about how AI is used in their 
care. Patient consent should be sought, especially in cases where AI 
influences critical healthcare decisions. (8) Continuous Monitoring and 
Improvement: Regularly monitor the performance of AI systems in 
clinical settings and make iterative improvements based on feedback 
from healthcare providers and patients. 
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Appendix 
 

Table 4: Objectives, Design, Specialties, Sample, and Population of the 74 Studies 
 

SN Study  Title Study Objectives Study Design Specialty 
Sample 

Size Population/Setting 

1 Wang et al., 
2021 [23] 

A Machine Learning Model 
for Accurate Prediction of 
Sepsis in ICU Patients. 

To develop an AI 
algorithm for early 
prediction of sepsis 

Secondary 
analysis of an 
observational 
cohort study 

Critical Care 
Medicine, 
Informatics 

4,449 

ICU patients, First 
Affiliated Hospital of 
Zhengzhou 
University 

2 Ma et al., 2022 
[24] 

Predicting the molecular 
subtype of breast cancer 
and identifying 
interpretable imaging 
features using machine 
learning algorithms. 

Evaluate machine 
learning models in 
predicting breast 
cancer subtypes 

Retrospective 
study 

Oncology, 
Radiology 

600 
Patients with 
invasive breast 
carcinoma 

3 Huang et al., 
2022 [25] 

Development and 
validation of a preoperative 
CT-based radiomic 
nomogram to predict 
pathology invasiveness in 
patients with a solitary 
pulmonary nodule: a 
machine learning 
approach, multicenter, 
diagnostic study. 

Develop and validate 
a nomogram for 
preoperative CT-
based prediction 

Retrospective, 
multicenter, 
diagnostic 
study 

Pulmonology, 
Radiology 

373 
Patients with a 
solitary pulmonary 
nodule 

4 
Fremond et 
al., 2023 [26] 

Interpretable deep learning 
model to predict the 
molecular classification of 
endometrial cancer from 
haematoxylin and eosin-
stained whole-slide images: 
a combined analysis of the 
PORTEC randomised trials 
and clinical cohorts. 

Predict molecular 
classification of 
endometrial cancer 
from images 

Combined 
analysis of 
randomised 
trials and 
cohorts 

Oncology, 
Pathology 

2,028 

Patients with 
intermediate-to-
high-risk 
endometrial cancer 

5 
Xu et al., 2021 
[27] 

Prognostic prediction of 
hypertensive intracerebral 
hemorrhage using CT 
radiomics and machine 
learning. 

Establish outcome 
prediction models for 
hypertensive 
intracerebral 
hemorrhage 

Retrospective 
study 

Neurology, 
Radiology 

270 

Patients with 
hypertensive 
intracerebral 
hemorrhage (HICH) 

6 
Qin et al., 2021 
[28] 

Machine-learning 
radiomics to predict early 
recurrence in perihilar 
cholangiocarcinoma after 
curative resection. 

Develop a model 
integrating 
clinicopathology, 
molecular pathology, 
and radiology to 
predict early 
recurrence in 
perihilar 
cholangiocarcinoma 

Retrospective 
analysis at 2 
institutions 

Oncology, 
Gastroenterology 

274 

Patients with 
perihilar 
cholangiocarcinoma 
(PHC) 

7 
Salah et al., 
2021 [29] 

Prediction of treatment 
effect perception in 
cosmetics using machine 
learning. 

Predict treatment 
effect perception 
using Random Forest 
classifier 

Analysis of 
three 
randomised 
double-blind 
clinical 
studies 

Dermatology, 
Clinical Research 50 

Subjects in cosmetic 
clinical studies 

8 Shu et al., 
2022 [30] 

Predicting Chronic 
Myocardial Ischemia Using 
CCTA-Based Radiomics 
Machine Learning 
Nomogram. 

Develop a CT-based 
radiomics machine 
learning nomogram 
for predicting 
chronic myocardial 
ischemia (MIS) 

Retrospective 
analysis of 
patients with 
CAD 

Cardiology, 
Radiology 

154 
Patients with 
coronary artery 
disease (CAD) 

9 Yue et al., 
2022 [31] 

Dose prediction via 
distance-guided deep 
learning: Initial 
development for 
nasopharyngeal carcinoma 
radiotherapy. 

Develop a dose 
prediction method 
for nasopharyngeal 
carcinoma 
radiotherapy using 
distance information 
and mask 
information 

Retrospective 
study 
including an 
external 
cohort 

Oncology, 
Radiology 

161 
Patients with 
nasopharyngeal 
carcinoma 

10 Zhang et al., 
2021 [32] 

Development and 
validation of MRI-based 
deep learning models for 
prediction of microsatellite 
instability in rectal cancer. 

Develop and validate 
MRI-based deep 
learning models for 
prediction of 
microsatellite 
instability (MSI) in 
rectal cancer 

Single-center 
retrospective 
study 

Oncology, 
Radiology 

491 Patients with rectal 
cancer 



 
 

2 | P a g e  

11 Groos et al., 
2022 [33] 

Development and 
Validation of a Deep 
Learning Method to Predict 
Cerebral Palsy From 
Spontaneous Movements 
in Infants at High Risk. 

Develop a deep 
learning method to 
predict cerebral palsy 
(CP) based on infant 
movements at a 
corrected age of 12-
89 months 

Prognostic 
study 
involving 
multiple 
hospitals 

Neurology, 
Pediatrics 

557 Infants at high risk of 
perinatal brain injury 

12 
Howell et al., 
2021 [34] 

Using Machine-Learning 
for Prediction of the 
Response to Cardiac 
Resynchronization Therapy: 
The SMART-AV Study. 

Develop a prediction 
model for short-term 
CRT response to 
identify CRT 
candidates for early 
multidisciplinary care 

Analysis of the 
SMART-AV 
trial 

Cardiology 741 
Patients with heart 
failure (HF) 

13 
Wen-Zhi et al., 
2022 [35] 

Prediction of pathological 
staging and grading of 
renal clear cell carcinoma 
based on deep learning 
algorithms. 

Develop a model to 
predict staging and 
grading of renal clear 
cell carcinoma using 
deep learning 
algorithms 

Analysis of 
patients from 
the 
Department 
of Urology 

Oncology, 
Urology 878 

Patients with renal 
clear cell carcinoma 

14 
Cui et al., 2022 
[36] 

Machine learning models 
predict overall survival and 
progression free survival of 
non-surgical esophageal 
cancer patients with 
chemoradiotherapy based 
on CT image radiomics 
signatures. 

Construct machine 
learning models for 
predicting 
progression free  
survival (PFS) and 
overall survival (OS) 
in esophageal 
squamous cell 
carcinoma (ESCC) 
patients 

Analysis of 
204 ESCC 
patients 

Oncology, 
Radiology 204 

ESCC patients 
receiving 
chemoradiotherapy 

15 
Li et al., 2022 
[37] 

Machine-learning based 
prediction of prognostic 
risk factors in patients with 
invasive candidiasis 
infection and bacterial 
bloodstream infection: a 
singled centered 
retrospective study. 

Predict prognostic 
risk factors in 
patients with invasive 
candidiasis infection 
using machine 
learning 

Retrospective 
study at a 
single center 

Infectious 
Disease, Critical 
Care Medicine 

246 
Hospitalised patients 
with invasive 
candidiasis infection 

16 Zhong et al., 
2024 [38] 

Deep Learning Radiomics 
Nomogram Based on 
Enhanced CT to Predict the 
Response of Metastatic 
Lymph Nodes to 
Neoadjuvant 
Chemotherapy in Locally 
Advanced Gastric Cancer. 

Predict response of 
metastatic lymph 
nodes to NACT in 
LAGC using deep 
learning radiomics 
nomogram 

Prospective 
study 

Oncology, 
Radiology 

112 Patients with LAGC 
receiving NACT 

17 Liu et al., 2022 
[39] 

Predictive Models for Knee 
Pain in Middle-Aged and 
Elderly Individuals Based 
on Machine Learning 
Methods. 

Develop prediction 
models for knee pain 
in middle-aged and 
elderly individuals 
using machine 
learning 

Analysis of 
data from the 
National 
Health and 
Nutrition... 

Orthopedics, 
Gerontology 

5386 Middle-aged and 
elderly individuals 

18 
Feng et al., 
2021 [40] 

Machine learning 
algorithm outperforms 
fibrosis markers in 
predicting significant 
fibrosis in biopsy-confirmed 
NAFLD. 

Develop a machine 
learning algorithm to 
predict fibrosis 
severity in NAFLD 
compared to non-
invasive fibrosis 
biomarkers 

Analysis of 
adults with 
biopsy-proven 
NAFLD 

Gastroenterology
, Hepatology 553 

Adults with biopsy-
proven NAFLD 

19 
Yagi et al., 
2022 [41] 

Development and 
validation of machine 
learning-based predictive 
model for clinical outcome 
of decompression surgery 
for lumbar spinal canal 
stenosis. 

Develop a machine 
learning model to 
predict postoperative 
outcomes of 
decompression 
surgery for LSS 

Multicentered 
retrospective 
study 

Orthopedics, 
Neurosurgery 848 

Patients undergoing 
decompression 
surgery for LSS 

20 Min et al., 2021 
[42] 

Prediction of Coronary 
Stent Underexpansion by 
Pre-Procedural 
Intravascular Ultrasound-
Based Deep Learning. 

Develop IVUS-based 
models to predict the 
occurrence of stent 
underexpansion in 
coronary intervention 

Analysis of 618 
coronary 
lesions 

Cardiology 618 
Patients undergoing 
percutaneous 
coronary intervention 

21 
El-Sappagh et 
al., 2021 [43] 

A multilayer multimodal 
detection and prediction 
model based on 
explainable artificial 
intelligence for Alzheimer's 
disease. 

Develop an accurate 
and interpretable AD 
diagnosis and 
progression 
detection model 

Analysis of 
data from 
Alzheimer's 
Disease 
Neuroimagin
g Initiative 
(ADNI) 
dataset 

Neurology, 
Gerontology 1048 

294 cognitively 
normal, 254 stable 
MCI, 232 progressive 
MCI, 268 AD 
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22 
Arabyarmoha
mmadi et al., 
2022 [44] 

Machine Learning to 
Predict Risk of Relapse 
Using Cytologic Image 
Markers in Patients With 
Acute Myeloid Leukemia 
Posthematopoietic Cell 
Transplantation. 

Predict relapse and 
prognosticate RFS 
after HCT in 
AML/MDS patients 
using myeloblasts' 
chromatin patterns 

Study on 
Wright-
Giemsa-
stained post-
HCT aspirate 
images 

Hematology 92 
Patients with 
AML/MDS 
undergoing HCT 

23 
Liu et al., 2022 
[45] 

Machine learning-based 
random forest for 
predicting decreased 
quality of life in thyroid 
cancer patients after 
thyroidectomy. 

Predict decreased 
QoL in thyroid cancer 
patients post-
thyroidectomy using 
machine learning 

Prospective 
cross-
sectional 
study 

Endocrinology, 
Oncology 286 

Thyroid cancer 
patients post-
thyroidectomy 

24 Salari et al., 
2023 [46] 

Using machine learning to 
predict gamma passing 
rate in volumetric-
modulated arc therapy 
treatment plans. 

Develop an 
algorithm to predict 
GPR in VMAT 
technique 

Analysis of 118 
clinical VMAT 
plans 

Oncology, 
Radiation 
Therapy 

118 
Various cancer cases 
using VMAT 
technique 

25 Wen et al., 
2023 [47] 

Deep learning-based 
postoperative visual acuity 
prediction in idiopathic 
epiretinal membrane. 

Develop a DL model 
to predict 
postoperative visual 
outcomes in iERM 
patients based on 
preoperative OCT 

Retrospective 
cohort study 

Ophthalmology 442 
Patients with 
idiopathic epiretinal 
membrane (iERM) 

26 
Liu et al., 2021 
[48] 

A deep learning model 
integrating mammography 
and clinical factors 
facilitates the malignancy 
prediction of BI-RADS 4 
microcalcifications in 
breast cancer screening. 

Improve malignancy 
prediction of BI-
RADS 4 
microcalcifications in 
breast cancer 
screening using DL 
model 

Retrospective 
study 

Radiology, 
Oncology 384 

Patients with BI-
RADS 4 
microcalcifications 

27 
Liu et al., 2023 
[49] 

Construction and validation 
of machine learning 
models for sepsis 
prediction in patients with 
acute pancreatitis. 

Construct predictive 
models for risk of 
sepsis in AP patients 
using machine 
learning methods 

Retrospective 
cohort study 

Gastroenterology
, Critical Care 
Medicine 

1672 

Patients with Acute 
Pancreatitis (AP) 
from MIMIC III and IV 
databases 

28 
Li et al., 2023 
[50] 

Machine learning methods 
for accurately predicting 
survival and guiding 
treatment in stage I and II 
hepatocellular carcinoma. 

Predict survival and 
guide treatment in 
early-stage HCC 
using machine 
learning models 

Analysis of 
SEER 
database data 

Oncology 1136 
Patients with stage I 
and II hepatocellular 
carcinoma (HCC) 

29 
Xia et al., 2023 
[51] 

Prediction of lung papillary 
adenocarcinoma-specific 
survival using ensemble 
machine learning models. 

Predict cancer-
specific survival in 
LPADC using 
ensemble machine 
learning and Cox 
regression models 

Study using 
SEER 
database 

Oncology 3615 
Patients diagnosed 
with LPADC 

30 
Vodencarevic 
et al., 2021 [52] 

Advanced machine 
learning for predicting 
individual risk of flares in 
rheumatoid arthritis 
patients tapering biologic 
drugs. 

Predict individual risk 
of flares in RA 
patients tapering 
biologic drugs using 
advanced machine 
learning 

Analysis of 
data from a 
randomised 
controlled 
trial 

Rheumatology 

Data of 
135 

visits 
from 41 
patients 

RA patients on 
bDMARDs in 
sustained remission 

31 
Li et al., 2022 
[53] 

Combining machine 
learning with radiomics 
features in predicting 
outcomes after mechanical 
thrombectomy in patients 
with acute ischemic stroke. 

Predict prognosis 
after mechanical 
thrombectomy in 
stroke patients 

Retrospective Neurology 260 
Stroke patients 
receiving mechanical 
thrombectomy 

32 
Verma et al., 
2022 [54] 

Exploratory application of 
machine learning methods 
on patient reported data in 
the development of 
supervised models for 
predicting outcomes. 

Explore ML methods 
to predict outcomes 
from PROMs in 
neck/back pain 
patients 

Exploratory 
study 

Orthopedics, 
Pain 
Management 

PROMs 
from 
two 

dataset
s 

Neck/back pain 
patients 

33 
Hae et al., 
2023 [55] 

Machine Learning-Based 
prediction of Post-
Treatment ambulatory 
blood pressure in patients 
with hypertension. 

Predict individual BP 
response to anti-
hypertensive 
medication using 
ABPM data 

Study with 
ABPM data 

Cardiology 1129 
Hypertension 
patients 

34 
Lee et al., 2022 
[56] 

A Machine Learning-Based 
Prognostic Model for the 
Prediction of Early Death 
After Traumatic Brain 
Injury: Comparison with 
the Corticosteroid 
Randomization After 
Significant Head Injury 
(CRASH) Model. 

Develop ML models 
for early death 
prediction in 
traumatic brain 
injury 

Retrospective 
review 

Neurology, 
Trauma 

423 
Traumatic brain 
injury patients 
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35 Kong et al., 
2023 [57] 

Preoperative prediction 
and histological 
stratification of intracranial 
solitary fibrous tumours by 
machine-learning models. 

Differentiate ISFT 
from AM and stratify 
ISFT histologically 
using ML models 

Retrospective Oncology, 
Neurology 

268 Patients with ISFT or 
AM 

36 Sundar et al., 
2022 [58] 

Machine-learning model 
derived gene signature 
predictive of paclitaxel 
survival benefit in gastric 
cancer: results from the 
randomised phase III 
SAMIT trial. 

Identify gene 
signature predictive 
of paclitaxel benefit 
in GC patients 

Analysis of 
SAMIT trial 
data 

Oncology 499 Gastric cancer 
patients 

37 
Sun et al., 
2022 [59] 

Texture Features of 
Computed Tomography 
Image under the Artificial 
Intelligence Algorithm and 
Its Predictive Value for 
Colorectal Liver Metastasis. 

Investigate CT image 
texture features' 
predictive role for 
CRLM 

Research 
study 

Oncology, 
Radiology 150 

Colorectal cancer 
patients 

38 
Zhang et al., 
2022 [60] 

Construction and validation 
of nomograms combined 
with novel machine 
learning algorithms to 
predict early death of 
patients with metastatic 
colorectal cancer. 

Develop prognostic 
models for early 
death in mCRC 
patients 

Analysis of 
SEER 
database data 

Oncology 35,639 
Metastatic colorectal 
cancer patients 

39 
Fan et al., 
2022 [61] 

Machine learning analysis 
for the noninvasive 
prediction of 
lymphovascular invasion in 
gastric cancer using 
PET/CT and enhanced CT-
based radiomics and 
clinical variables. 

Develop predictive 
models for LVI in 
gastric cancer using 
PET/CT and CT 
radiomics 

Retrospective 
study 

Oncology, 
Radiology 101 

Gastric cancer 
patients 

40 
Ou et al., 2022 
[62] 

Prediction of Postoperative 
Pathologic Risk Factors in 
Cervical Cancer Patients 
Treated with Radical 
Hysterectomy by Machine 
Learning. 

Predict PRF in CC 
patients treated with 
RH using ML 

Retrospective 
analysis 

Oncology, 
Gynecology 1260 

Early-stage cervical 
cancer patients 

41 
Luo Y et al., 
2023 [63] 

A DWI-based radiomics-
clinical machine learning 
model to preoperatively 
predict the futile 
recanalization after 
endovascular treatment of 
acute basilar artery 
occlusion patients. 

Develop an ML 
model to predict 
futile recanalization 
in ABAO patients 
with EVT 

Retrospective 
analysis 

Neurology, 
Radiology 132 

Acute basilar artery 
occlusion patients 

42 
Huang J et al., 
2022 [64] 

Development and 
validation of a combined 
nomogram model based 
on deep learning contrast-
enhanced ultrasound and 
clinical factors to predict 
preoperative 
aggressiveness in 
pancreatic neuroendocrine 
neoplasms. 

Develop a model to 
predict preoperative 
aggressiveness in 
PNENs 

Retrospective 
study 

Oncology, 
Radiology 104 

Patients with 
histologically proven 
PNENs 

43 Yin P et al., 
2023 [65] 

Machine Learning Using 
Presentation CT Perfusion 
Imaging for Predicting 
Clinical Outcomes in 
Patients With Aneurysmal 
Subarachnoid 
Hemorrhage. 

Evaluate ML models 
for predicting clinical 
outcomes in aSAH 
patients 

Retrospective 
analysis 

Neurology 242 
Aneurysmal 
subarachnoid 
hemorrhage patients 

44 
Zhang Z et al., 
2023 [66] 

Using machine learning 
methods to predict 28-day 
mortality in patients with 
hepatic encephalopathy. 

Develop ML models 
for predicting 28-day 
mortality in HE 
patients 

Retrospective 
cohort Hepatology 601 

Patients with hepatic 
encephalopathy 

45 
Cheng M et 
al., 2023 [67] 

Deep learning for 
predicting the risk of 
immune checkpoint 
inhibitor-related 
pneumonitis in lung 
cancer. 

Develop a model for 
early prediction of 
ICI-related 
pneumonitis in lung 
cancer patients 

Retrospective 
study 

Oncology, 
Pulmonology 141 

Lung cancer patients 
receiving ICI therapy 

46 
Kao YT et al., 
2023 [68] 

Machine Learning-Based 
Prediction of Atrial 
Fibrillation Risk Using 
Electronic Medical Records 
in Older Aged Patients. 

Develop a model to 
predict 1-year new-
onset AF risk in older 
patients using 
medical records 

Retrospective 
study 

Cardiology, 
Gerontology 

10,690 
Older aged patients 
without prior AF 
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47 Saux P et al., 
2023 [69] 

Development and 
validation of an 
interpretable machine 
learning-based calculator 
for predicting 5-year 
weight trajectories after 
bariatric surgery: a 
multinational retrospective 
cohort SOPHIA study. 

Develop a model for 
individual 
preoperative 
prediction of 5-year 
weight loss 
trajectories after 
bariatric surgery 

Multinational 
cohort 

Bariatric Surgery 10,231 
Adult patients 
undergoing bariatric 
surgery 

48 
Li J et al., 2023 
[70] 

Machine Learning-Based 
Development of 
Nomogram for 
Hepatocellular Carcinoma 
to Predict Acute Liver 
Function Deterioration 
After Drug-Eluting Beads 
Transarterial 
Chemoembolization. 

Develop a 
nomogram to predict 
ALFD after DEB-
TACE in patients with 
HCC 

Retrospective 
study Oncology 288 

Patients with 
hepatocellular 
carcinoma (HCC) 
undergoing DEB-
TACE 

49 Faraone SV et 
al., 2022 [71] 

Predicting efficacy of 
viloxazine extended-release 
treatment in adults with 
ADHD using an early 
change in ADHD 
symptoms: Machine 
learning Post Hoc analysis 
of a phase 3 clinical trial. 

Determine if early 
response to 
viloxazine ER 
predicts efficacy 
outcome in adults 
with ADHD 

Post-hoc 
analysis 

Psychiatry, 
ADHD 

354 
Adults with ADHD 
participating in a 
clinical trial 

50 
Zhang K et al., 
2023 [72] 

Using deep learning to 
predict survival outcome in 
non-surgical cervical 
cancer patients based on 
pathological images. 

Analyse clinical 
features and 
pathologic images to 
predict 5-year overall 
survival in non-
surgical cervical 
cancer patients 

Retrospective 
analysis 

Oncology, 
Radiology, 
Pathology 

238 

Non-surgical cervical 
cancer patients 
treated with 
radiochemotherapy 

51 Cai ZH et al., 
2023 [73] 

Magnetic resonance 
imaging-based deep 
learning model to predict 
multiple firings in double-
stapled colorectal 
anastomosis. 

Develop a model to 
predict the need for 
multiple linear 
stapler cartridges in 
DST anastomosis 
based on MRI 

Retrospective 
study 

Surgery, 
Radiology 

328 

Mid-low rectal cancer 
patients undergoing 
LAR with DST 
anastomosis 

52 Wang Y et al., 
2023 [74] 

Development and 
validation of a prediction 
model based on machine 
learning algorithms for 
predicting the risk of heart 
failure in middle-aged and 
older US people with 
prediabetes or diabetes. 

Develop and validate 
a ML model to 
predict the risk of 
heart failure in 
patients with 
prediabetes or 
diabetes 

Analysis of 
survey data 

Cardiology, 
Diabetes 

3527 

Middle-aged and 
older US people with 
prediabetes or 
diabetes 

53 Bao Z et al., 
2021 [75] 

Prediction of repeated-
dose intravenous ketamine 
response in major 
depressive disorder using 
the GWAS-based machine 
learning approach. 

Predict treatment 
outcomes for 
repeated-dose 
intravenous 
ketamine in MDD 
patients using 
genotyping 
information 

Retrospective 
analysis 

Psychiatry, 
Genetics 

83 

Major depressive 
disorder patients 
receiving ketamine 
treatment 

54 Li P et al., 2023 
[76] 

Prediction of postoperative 
infection in elderly using 
deep learning-based 
analysis: an observational 
cohort study. 

Develop and validate 
deep learning 
models to predict 
postoperative 
infections in elderly 
undergoing surgery 

Observational 
cohort 

Surgery, 
Geriatrics 

2014 

Elderly patients who 
had elective surgery 
from 28 hospitals in 
China 

55 Liu Y et al., 
2023 [77] 

Functional Outcome 
Prediction in Acute 
Ischemic Stroke Using a 
Fused Imaging and Clinical 
Deep Learning Model. 

Predict the 90-day 
mRS score in acute 
ischemic stroke 
patients by fusing a 
deep learning model 
of diffusion-weighted 
imaging images and 
clinical information 

Retrospective 
study 

Neurology, 
Radiology 

640 Acute ischemic 
stroke patients 

56 
Xie N et al., 
2023 [78] 

Preoperative 
Extrapancreatic Extension 
Prediction in Patients with 
Pancreatic Cancer Using 
Multiparameter MRI and 
Machine Learning-Based 
Radiomics Model. 

Predict 
extrapancreatic 
extension (EPE) in 
patients with 
pancreatic cancer 
preoperatively based 
on multiparameter 
MRI and machine 
learning-based 
radiomics 

Retrospective 
study 

Oncology, 
Radiology, 
Surgery 

156 
Patients with 
pancreatic cancer 
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57 Chen X et al., 
2023 [79] 

Application of machine 
learning model in 
predicting the likelihood of 
blood transfusion after hip 
fracture surgery. 

Develop machine 
learning models to 
predict the likelihood 
of postoperative 
blood transfusion in 
patients undergoing 
hip fracture surgery 

Retrospective 
study 

Orthopedics, 
Surgery 

1355 

Patients undergoing 
hip fracture surgery 
at the Affiliated 
Hospital of Qingdao 
University 

58 Forrest LN et 
al., 2023 [80] 

Machine learning v. 
traditional regression 
models predicting 
treatment outcomes for 
binge-eating disorder from 
a randomised controlled 
trial. 

Compare the 
accuracy of 
traditional and 
machine-learning 
approaches in 
predicting BED 
treatment outcomes 

Randomised 
controlled 
trial 

Psychiatry, 
Psychology 

191 
Adults with binge-
eating disorder (BED) 
in a treatment trial 

59 Tan TH et al., 
2021 [81] 

Predicting outcomes in 
older ED patients with 
influenza in real time using 
a big data-driven and 
machine learning 
approach to the hospital 
information system. 

Implement ML to 
predict outcomes in 
older ED patients 
with influenza 

Retrospective 
study 

Emergency 
Medicine, 
Geriatrics, 
Infectious 
Diseases 

5508 

Older emergency 
department (ED) 
patients with 
influenza in three 
hospitals 

60 
Chandra RS et 
al., 2023 [82] 

Evaluation of Multiple 
Machine Learning Models 
for Predicting Number of 
Anti-VEGF Injections in the 
Comparison of AMD 
Treatment Trials (CATT). 

Apply ML models to 
predict the number 
of PRN injections of 
anti-VEGF for 
neovascular AMD in 
two years 

Retrospective 
analysis 

Ophthalmology, 
Radiology, 
Otolaryngology 

493 

Participants with 
nAMD randomised to 
PRN treatment in the 
CATT trial 

61 
Jin Y et al., 
2023 [83] 

Development and testing 
of a random forest-based 
machine learning model 
for predicting events 
among breast cancer 
patients with a poor 
response to neoadjuvant 
chemotherapy. 

Develop models to 
predict events in 
breast cancer 
patients with a poor 
response to 
neoadjuvant 
chemotherapy 

Retrospective 
study 

Oncology, 
Surgery 315 

Breast cancer 
patients with stable 
disease or 
progressive disease 
after neoadjuvant 
chemotherapy 

62 
Su Z et al., 
2023 [84] 

Clinical model of 
pulmonary metastasis in 
patients with 
osteosarcoma: A new 
multiple machine learning-
based risk prediction. 

Construct a clinical 
prediction model for 
osteosarcoma 
patients to evaluate 
factors influencing 
the occurrence of 
pulmonary 
metastasis 

Retrospective 
study 

Oncology, 
Radiology, 
Surgery 

612 
Patients with 
osteosarcoma 

63 
Liu Y et al., 
2023 [85] 

Application of machine 
learning algorithms in 
electronic medical records 
to predict amputation-free 
survival after first 
revascularization in 
patients with peripheral 
artery disease. 

Apply ML algorithms 
to develop a model 
predicting 
amputation-free 
survival (AFS) after 
first revascularization 
in peripheral artery 
disease (PAD) 
patients 

Retrospective 
study 

Cardiology, 
Vascular 
Medicine, 
Surgery 

2130 

Patients with 
peripheral artery 
disease undergoing 
revascularization 

64 
Wu Y et al., 
2023 [86] 

A retrospective study using 
machine learning to 
develop predictive model 
to identify urinary infection 
stones in vivo. 

Develop a ML model 
for preoperative 
identification of 
infection stones in 
vivo 

Retrospective 
study 

Urology, 
Infectious 
Diseases 

2565 
Patients with 
urolithiasis who 
underwent surgery 

65 
Zhang K et al., 
2022 [87] 

The diagnostic value of 
machine-learning-based 
model for predicting the 
malignancy of solid 
nodules in multiple 
pulmonary nodules. 

Examine the efficacy 
of a ML diagnostic 
model for solid 
nodules in multiple 
pulmonary nodules 
combining patient 
clinical information 
and CT features 

Retrospective 
study 

Radiology, 
Pulmonology 

446 
Patients with 
multiple pulmonary 
nodules 

66 
Tran QNN et 
al., 2023 [88] 

A Machine Learning-Based 
Model to Predict In-
Hospital Mortality of Lung 
Cancer Patients: A 
Population-Based Study of 
523,959 Cases. 

Stratify new lung 
cancer patients 
based on the risk of 
in-hospital mortality 
rate after diagnosis 

Population-
based study 

Oncology, 
Epidemiology 

523,959 
Lung cancer cases 
from SEER database 

67 
Zhang H et al., 
2023 [89] 

Predicting N2 lymph node 
metastasis in presurgical 
stage I-II non-small cell 
lung cancer using 
multiview radiomics and 
deep learning method. 

Develop a model to 
predict N2 lymph 
node metastasis in 
presurgical stage I-II 
non-small cell lung 
cancer (NSCLC) using 
multiview radiomics 
and deep learning 
method 

Retrospective 
study 

Oncology, 
Radiology, 
Surgery 

140 
NSCLC patients at 
stage I-II 
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68 Ma X et al., 
2023 [90] 

Development and 
validation of a deep 
learning signature for 
predicting lymph node 
metastasis in lung 
adenocarcinoma: 
comparison with radiomics 
signature and clinical-
semantic model. 

Develop a deep 
learning (DL) 
signature to predict 
lymph node 
metastasis in lung 
adenocarcinoma 
patients 

Retrospective 
study 

Oncology, 
Radiology, 
Surgery 

612 Patients with lung 
adenocarcinoma 

69 
Li D et al., 
2023 [91] 

Prediction of mortality in 
pneumonia patients with 
connective tissue disease 
treated with 
glucocorticoids or/and 
immunosuppressants by 
machine learning. 

Construct a 
nomogram for 
predicting 90-day 
mortality in 
pneumonia patients 
with connective 
tissue disease treated 
with glucocorticoids 
or/and 
immunosuppressant
s 

Retrospective 
analysis 

Pulmonology, 
Rheumatology 368 

Pneumonia patients 
with connective 
tissue disease treated 
with glucocorticoids 
or/and 
immunosuppressant
s 

70 Le Y et al., 
2023 [92] 

The Construction and 
Validation of a new 
Predictive Model for Overall 
Survival of Clear Cell Renal 
Cell Carcinoma Patients 
with Bone Metastasis 
Based on Machine 
Learning Algorithm. 

Develop and validate 
ML-based predictive 
models for patients 
with bone 
metastases from 
clear cell renal cell 
carcinoma (ccRCC) 
and identify 
appropriate models 
for clinical decision-
making 

Retrospective 
study 

Oncology, 
Radiology, 
Surgery 

1532 
Clear cell renal cell 
carcinoma patients 
with bone metastasis 

71 
Zhang H et al., 
2023 [93] 

Construction and 
evaluation of an artificial 
intelligence-based risk 
prediction model for death 
in patients with 
nasopharyngeal cancer. 

Screen risk factors for 
death in 
nasopharyngeal 
carcinoma (NPC) 
patients and 
establish a risk 
prediction model 
using AI technology 

Retrospective 
study 

Oncology, Legal 
Studies 

2116 

NPC patients in SEER 
database and 
Bengbu Medical 
College 

72 
Etter JF et al., 
2023 [94] 

Predicting smoking 
cessation, reduction and 
relapse six months after 
using the Stop-Tabac app 
for smartphones: a 
machine learning analysis. 

Identify predictors of 
smoking cessation, 
reduction, and 
relapse among users 
of the Stop-Tabac 
smoking cessation 
app 

Secondary 
analysis 

Public Health, 
Addiction 
Medicine, 
Behavioral 
Science 

5293 

Daily smokers from 
Switzerland and 
France using Stop-
Tabac app 

73 
Lyu Z et al., 
2023 [95] 

Establishment and 
evaluation of a predictive 
model for early 
neurological deterioration 
after 
intravenous thrombolysis 
in acute ischemic stroke 
based on machine learning 

Establish a model to 
predict the risk of 
early neurological 
deterioration (END) 
in patients with 
acute ischemic 
stroke (AIS) after 
intravenous 
thrombolysis 

Retrospective 
analysis 

Neurology, 
Emergency 
Medicine, 
Cardiology 

704 

AIS patients receiving 
intravenous 
thrombolytic at 
Qinhuangdao City 
Hospital 

74 
Huang J et al., 
2023 [96] 

Twenty-eight-day in-
hospital mortality 
prediction for elderly 
patients 
with ischemic stroke in the 
intensive care unit: 
Interpretable machine 
learning 
models 

Establish and 
validate ML models 
for 28-day in-hospital 
mortality prediction 
in elderly patients 
with ischemic stroke 
(IS) in the ICU 

Retrospective 
analysis 

Neurology, 
Geriatrics, Critical 
Care Medicine 

1236 

Elderly patients with 
IS in the ICU from 
eICU Collaborative 
Research Database 

 
 

 
Table 5: Intervention, Outcomes, Findings, Limitations, and Conclusions of 74 Studies 

 

SN Study Intervention/Exposure Outcome 
Measures 

AI or Machine 
Learning Model 

Used 
Key Findings Limitations Conclusion 

1 
Wang et 
al., 2021 
[23] 

Analysis of electronic 
medical record data 

Onset of sepsis 
Random forest 
machine-
learning model 

AUC: 0.91, 
Sensitivity: 
87%, 
Specificity: 
89%. Good 

Limited to the 
specific 
hospital's ICU 
patients; may 
not generalise 

Newly established 
machine learning-
based model shows 
good predictive ability 
in Chinese sepsis 
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predictive 
ability in 
Chinese 
sepsis 
patients. 

to other 
populations. 

patients. External 
validation needed to 
confirm universality. 

2 Ma et al., 
2022 [24] 

Clinical characteristics 
and imaging features 

Breast cancer 
molecular subtypes 

Decision tree 
(DT) and others 

DT model: 
AUC: 0.971; 
accuracy: 
0.947. 
Improved 
radiologist 
performance 
in predicting 
subtypes with 
model 
assistance. 

Limited to 
invasive breast 
carcinoma; 
findings may 
not apply to 
other types of 
breast cancer or 
early stages. 

Machine learning 
model assists in 
differentiating breast 
cancer molecular 
subtypes, significantly 
improving radiologist 
performance. 

3 
Huang et 
al., 2022 
[25] 

CT-based radiomic and 
clinical-radiological 
signatures 

Pathology 
invasiveness 

LASSO 
algorithm and 
logistic 
regression 

AUCs: 0.93, 
0.91, 0.90. 
Accurately 
predicts 
interstitial 
invasion in 
solitary 
pulmonary 
nodules. 

Limited to 
early-stage 
non-small-cell 
lung cancer; 
generalizability 
to other lung 
conditions or 
stages unclear. 

Nomogram 
combining clinical-
radiological and 
radiomic signatures 
accurately predicts 
pathology 
invasiveness in 
solitary pulmonary 
nodules, aiding in 
clinical decision-
making. 

4 
Fremond 
et al., 2023 
[26] 

Haematoxylin and eosin-
stained whole-slide 
images 

Molecular 
classification of 
endometrial cancer 

Deep learning 
pipeline 
(im4MEC) 

Macro-
average 
AUROCs: 
0.874 on 
cross-
validation, 
0.876 on test 
set. Identified 
morpho-
molecular 
correlates and 
prognostic 
refinement. 

Specific to 
intermediate-
to-high-risk 
endometrial 
cancer. 

The deep learning 
model im4MEC 
enables haematoxylin 
and eosin-based 
prediction and 
prognostic 
refinement of 
molecular 
endometrial cancer 
classification. 

5 
Xu et al., 
2021 [27] CT radiomics 

6-month outcome 
based on the 
modified Rankin 
Scale 

Multiple 
machine 
learning 
algorithms 

RF and 
XGBoost 
models had 
best accuracy: 
>92%. 
Provided 
accurate 
prognostic 
prediction 
models for 
HICH. 

Retrospective 
design may 
limit the 
applicability of 
findings; further 
prospective 
studies needed 
for validation. 

Radiomics and 
machine learning 
models, especially RF 
and XGBoost, offer 
accurate prognostic 
predictions for 
hypertensive 
intracerebral 
hemorrhage. 

6 Qin et al., 
2021 [28] 

Contrast-enhanced CT 
and curative resection 

Early recurrence of 
perihilar 
cholangiocarcinom
a 

Machine 
learning 
analysis of 
radiomic 
features 

AUC: 0.883. 
Higher 
accuracy than 
conventional 
staging 
systems. 
Identified 7 
independent 
factors for the 
multilevel 
model. 

Limited to 
patients with 
perihilar 
cholangiocarcin
oma after 
curative 
resection. 

Radiomics-based 
multilevel model 
outperforms rival 
models and staging 
systems, assisting in 
post-operative 
management of 
perihilar 
cholangiocarcinoma. 

7 Salah et al., 
2021 [29] 

Application of different 
cosmetic products 

Treatment effect 
perception in 
cosmetics 

Random Forest 
(RF) classifier 

Good 
accuracy in 
predicting 
treatment 
effect 
perception. 
Simplifies 
interpretabilit
y in clinical 
trials. 

Small sample 
size; specific to 
cosmetic 
products. 

Random Forest 
classifier effectively 
predicts treatment 
effect perception, 
aiding consumer-
centered claim 
substantiation in 
clinical trials. 

8 Shu et al., 
2022 [30] 

Coronary computed 
tomography 
angiography (CCTA) 

Chronic myocardial 
ischemia (MIS) 

Machine 
learning 
combined with 
clinically related 
factors 

Accuracy of 
nomogram: 
Training set - 
0.839, Test set 
- 0.832, 
Validation set 
- 0.816. 
Improved 

Limited to 
patients with 
CAD 
undergoing 
CCTA. 

Radiomics 
nomogram based on 
CCTA images is a non-
invasive tool for 
predicting MIS in CAD 
patients, aiding in 
identifying high-risk 
patients. 
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diagnosis 
accuracy over 
vascular 
stenosis alone. 

9 Yue et al., 
2022 [31] 

Radiotherapy planning 
CT and clinical plans 

Dose prediction in 
radiotherapy 

Deep learning 
method based 
on boundary 
distance 

Superior 
performance 
in dose 
prediction 
compared to 
mask-based 
methods. 
Enhanced 
accuracy for 
inverse 
planning of 
GTVnx and 
OARs. 

Limited to 
nasopharyngeal 
carcinoma 
cases; further 
validation 
needed for 
other cancer 
sites. 

The proposed 
distance-guided 
method for dose 
prediction offers 
enhanced 
performance in 
nasopharyngeal 
carcinoma 
radiotherapy cases, 
suggesting further 
studies for broader 
validation. 

10 
Zhang et 
al., 2021 
[32] 

High-resolution T2-
weighted magnetic 
resonance images 

Microsatellite 
instability (MSI) 
status 

Modified 
MobileNetV2 
architecture 

Combined 
model 
correctly 
classified 
85.4% of MSI 
status, 
outperformin
g the clinical 
model. No 
significant 
difference 
with or 
without 
clinical 
factors. 

Limited to 
single-center 
data; 
applicability to 
broader 
populations 
needs further 
study. 

Deep learning models 
based on high-
resolution MRI 
images demonstrate 
good predictive 
performance for MSI 
status in rectal 
cancer, aiding in 
individualised 
therapeutic 
strategies. 

11 
Groos et 
al., 2022 
[33] 

Video recording of 
spontaneous movements Prediction of CP 

Deep learning-
based method 

Sensitivity of 
71.4%, 
specificity of 
94.1% in 
predicting CP. 
Higher 
accuracy than 
conventional 
methods but 
similar to 
GMA tool. 

Data on race 
and ethnicity 
not consistently 
collected across 
studies. 

Deep learning-based 
method 
demonstrates 
predictive accuracy 
for early detection of 
CP in clinical settings. 

12 
Howell et 
al., 2021 
[34] 

Clinical, 
electrocardiographic, 
echocardiographic, and 
biomarker characteristics 

Short-term CRT 
response 

Machine 
learning models 

Adaptive lasso 
model most 
accurate with 
19 predictors. 
Predicted CRT 
response with 
70% accuracy, 
sensitivity, 
and 
specificity. 

Further 
validation in 
prospective 
studies needed. 

Machine learning 
predicts short-term 
CRT response, aiding 
in CRT procedure and 
early post-CRT care 
planning. 

13 
Wen-Zhi 
et al., 2022 
[35] 

Preoperative clinical 
variables 

Tumor pathological 
staging and 
grading 

Deep learning 
algorithms 
(BiLSTM, CNN-
BiLSTM, CNN-
BiGRU) 

High AUC 
values (0.933 
to 0.948) for 
tumor staging 
prediction 
using various 
models. 

Limited to a 
single hospital's 
data. 

Accurate projection of 
staging and grading 
of renal clear cell 
carcinoma, aiding 
clinicians in 
treatment planning. 

14 Cui et al., 
2022 [36] 

CT image radiomics 
signatures 

PFS and OS in 
ESCC 

LASSO Cox 
model, machine 
learning models 

Combined 
radiomics and 
clinical 
models 
showed 
higher 
performance 
than either 
alone. 

Limited to a 
specific patient 
population and 
cancer type. 

Combined radiomics 
and clinical machine 
learning models 
accurately predict 
PFS and OS in non-
surgical ESCC 
patients, aiding in 
clinical decision-
making. 

15 
Li et al., 
2022 [37] 

Analysis of 
epidemiological 
information 

Prognostic factors 
related to death 

Machine 
learning 
methods 

Identified 
main 
predictors of 
death 
prognosis: 
serum 
creatinine 
level, age, 
length of stay, 
ICU stay, 
serum 

Limited to a 
single-center 
retrospective 
study. 

Identified key 
prognostic factors in 
patients with invasive 
candidiasis infection, 
contributing to 
improved clinical 
management. 
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albumin level, 
CRP, 
leukocyte 
count, PCT, 
total bilirubin. 

16 
Zhong et 
al., 2024 
[38] 

Baseline and restage 
enhanced CT images and 
clinical characteristics 

Response of LAGC 
to NACT 

Deep learning 
radiomics 
nomogram 

DL delta 
radiomics 
nomogram 
(DLDRN) 
predicted 
therapeutic 
response in 
metastatic 
lymph nodes 
with high 
accuracy. 

Specific to 
LAGC patients 
undergoing 
NACT. 

DLDRN effectively 
predicts therapeutic 
response in 
metastatic lymph 
nodes in LAGC, aiding 
in individualised 
treatment planning. 

17 
Liu et al., 
2022 [39] 

Analysis of health and 
nutrition survey data Risk of knee pain 

Logistic 
regression, 
random forest, 
Extreme 
Gradient 
Boosting 

Logistic 
regression 
showed 
highest 
accuracy (AUC 
= 0.71). 
Nomogram 
model based 
on logistic 
regression 
showed good 
discrimination 
ability. 

Only 
considered self-
reported knee 
pain, not 
validated by 
clinical 
examination. 

Developed a 
nomogram tool for 
evaluating the risk of 
knee pain in the US 
middle-aged and 
elderly population in 
primary care. 

18 
Feng et al., 
2021 [40] 

Analysis of clinical and 
laboratory data 

Fibrosis severity in 
NAFLD 

Machine 
learning 
algorithm (MLA) 

MLA showed 
higher 
diagnostic 
accuracy 
(AUROC: 
0.902) than 
conventional 
fibrosis 
biomarkers 
for identifying 
significant 
fibrosis. 

Specific to 
patients with 
biopsy-
confirmed 
NAFLD. 

Newly developed MLA 
algorithm 
demonstrates 
excellent diagnostic 
performance for 
predicting significant 
fibrosis in NAFLD. 

19 
Yagi et al., 
2022 [41] 

Health-related quality of 
life data 

Postoperative 
outcomes of 
decompression 
surgery 

Machine 
learning 
algorithms 

Developed a 
machine 
learning 
model with 
excellent 
prediction 
accuracy for 
postoperative 
outcomes in 
LSS surgery. 

Limited to a 
specific patient 
population and 
surgery type. 

Successful 
development of a 
machine learning 
model to predict 
outcomes of 
decompression 
surgery for LSS, aiding 
in patient 
management and 
surgical decision-
making. 

20 
Min et al., 
2021 [42] 

Pre- and post-stenting 
IVUS images 

Occurrence of 
stent 
underexpansion 

Deep learning 
algorithms 

Accurately 
predicted 
incomplete 
stent 
expansion 
using deep-
learning 
algorithms. 

Limited to 
patients 
undergoing 
percutaneous 
coronary 
intervention. 

Deep-learning 
algorithms can 
predict incomplete 
stent expansion, 
aiding in treatment 
decisions to avoid 
stent 
underexpansion. 

21 

El-
Sappagh 
et al., 2021 
[43] 

11 modalities including 
biological and clinical 
measures 

Early diagnosis of 
AD and MCI-to-AD 
progression 

Random forest 
(RF) with SHAP 
framework 

Cross-
validation 
accuracy of 
93.95% and 
87.08% in first 
and second 
layers, 
respectively. 

Limited to data 
from ADNI; may 
not generalise 
to broader 
populations. 

Developed an 
accurate, 
interpretable model 
for AD diagnosis and 
progression, 
enhancing clinical 
understanding. 

22 

Arabyarmo
hammadi 
et al., 2022 
[44] 

Computer-extracted 
morphology and texture 
features of myeloblasts 

Relapse and RFS 
after HCT 

LASSO with Cox 
regression 
model 

Risk score 
associated 
with RFS and 
predictive of 
AML relapse. 

Limited to 
specific patient 
population and 
conditions. 

Texture features from 
chromatin patterns of 
myeloblasts predict 
post-HCT relapse and 
prognosticate RFS in 
AML/MDS. 

23 
Liu et al., 
2022 [45] 

EORTC QLQ-C30 
questionnaire 

Decreased QoL 3 
months post-
thyroidectomy 

Random forest 
model 

AUCs of 0.834 
and 0.897 in 
training and 
validation 
cohorts, 
respectively. 

Study design 
and patient 
sample may 
limit 
generalizability. 

Developed a random 
forest model with 
high accuracy for 
predicting decreased 
QoL in thyroid cancer 
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patients post-
thyroidectomy. 

24 
Salari et al., 
2023 [46] 

Computational analysis 
of VMAT plans GPR in VMAT plans 

Random forest 
regression and 
support vector 
regression 

Comparable 
prediction 
values and 
errors for both 
models. 
Similar 
performance 
in predicting 
GPR. 

Focused on a 
specific 
radiation 
therapy 
technique; may 
not generalize. 

Effective algorithm 
developed for 
predicting GPR in 
VMAT plans, aiding in 
planning and 
radiation delivery. 

25 
Wen et al., 
2023 [47] 

Preoperative optical 
coherence tomography 
(OCT) images 

6-month 
postoperative best-
corrected visual 
acuity (BCVA) 

Deep learning 
and multimodal 
deep fusion 
network 
(MDFN) models 

MAE of 0.070 
logMAR and 
RMSE of 0.11 
logMAR in 
testing 
dataset. 
Superior 
performance 
with R2 = 0.80 
compared to 
regression 
model. 

Retrospective 
design and 
specific patient 
population. 

DL model based on 
OCT images 
accurately predicts 
postoperative BCVA 
in iERM patients, 
aiding in surgical 
planning. 

26 Liu et al., 
2021 [48] 

Full-field digital 
mammography and 
clinical variables 

Malignancy of BI-
RADS 4 
microcalcifications 

Combined DL 
model 

AUC of 0.910, 
better than 
clinical model, 
DL image 
model, and 
BI-RADS. Non-
inferior 
performance 
as senior 
radiologists. 

Limited to BI-
RADS 4 
microcalcificati
ons and specific 
patient 
population. 

Combined deep 
learning model 
improves malignancy 
prediction of BI-RADS 
4 microcalcifications 
and assists junior 
radiologists. 

27 Liu et al., 
2023 [49] 

Analysis of clinical data Risk of sepsis in AP 
patients 

Six machine 
learning models 
including SVM, 
KNN, MLP, LR, 
GBDT, 
AdaBoost 

GBDT model 
outperformed 
LR and 
scoring 
systems with 
AUC of 0.985. 

Retrospective 
design and 
reliance on 
specific 
databases. 

Machine learning 
model-GBDT model 
has better 
performance in 
predicting sepsis in 
AP patients, aiding 
early identification 
and intervention. 

28 Li et al., 
2023 [50] 

Patient demographic 
information, tumor 
characteristics, 
treatment details 

Survival in early-
stage HCC 

Neural network, 
DeepSurv, 
random survival 
forest (RSF), 
CoxPH 

ML models 
showed 
better 
discrimination 
than standard 
CoxPH model. 
Recommende
d treatments 
associated 
with higher 
survival rates. 

Limited to 
early-stage HCC 
and 
retrospective 
database 
analysis. 

ML model predicts 
survival and aids in 
treatment decisions 
for early-stage HCC, 
providing 
individualised 
recommendations. 

29 Xia et al., 
2023 [51] 

Analysis of SEER 
database data 

Long-term cancer-
specific survival in 
LPADC 

Ensemble 
models (GBS, 
RSF, EST) and 
CoxPH model 

Good 
discriminative 
ability and 
calibration; 
RSF and GBS 
models most 
effective. Web 
application 
developed for 
clinical use. 

Specific to 
LPADC and 
based on SEER 
database data. 

Effective prediction 
models for long-term 
cancer-specific 
survival in LPADC, 
aiding in personalised 
treatment and 
prognosis. 

30 
Vodencare
vic et al., 
2021 [52] 

Clinical data collection 
Flares after 
tapering bDMARDs 

Four basic 
machine 
learning models 
and ensemble 
learning 
method 

AUROC of 
0.81. Percent 
dose change 
of bDMARDs, 
DAS-28 ESR, 
disease 
duration, and 
inflammatory 
markers most 
important 
predictors of a 
flare. 

Limited to a 
specific patient 
population and 
condition. 

Machine learning 
methods predict 
flares after tapering 
bDMARDs in RA 
patients in sustained 
remission. 

31 Li et al., 
2022 [53] 

DWI omics 
characteristics 

Prognosis after 
thrombectomy 

Support vector 
machine 
classifier 

AUC 0.945 
and 0.920 in 
training and 
test sets, 
respectively 

Based on 
retrospective 
data 

Effective prediction of 
post-thrombectomy 
prognosis in stroke 
patients 
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32 
Verma et 
al., 2022 
[54] 

Patient-reported 
outcome measurements 
(PROMs) 

Patient outcomes 
Various ML 
models 

Potential of 
ML to predict 
and classify 
PROMs 

Limited to 
specific patient 
conditions 

ML methods can 
support clinical 
decision making 
using PROMs 

33 
Hae et al., 
2023 [55] 

Clinical, laboratory 
findings, ABPM data, 
medication details 

Individual BP 
response 

CatBoost and 
other ML 
models 

Accurate 
prediction of 
post-
treatment BP 
levels, aiding 
personalised 
treatment 

Focus on 
hypertension 
patients 

ML models assist 
clinicians in 
personalising anti-
hypertensive 
treatment 

34 
Lee et al., 
2022 [56] 

Clinical findings, 
laboratory values, CT 
findings 

Early death after 
traumatic brain 
injury 

ML models 
including 
random forest, 
SVM, logistic 
regression 

Comparable 
performance 
to CRASH 
model, 
developed 
with smaller 
sample size 

Retrospective 
design 

ML models effectively 
predict early death 
after traumatic brain 
injury 

35 Kong et al., 
2023 [57] 

MRI radiomics features 

Differentiation and 
histological 
stratification of 
ISFT 

ML models 
based on 
radiomics 
features 

AUC values of 
0.917, 0.923, 
0.950 in test 
group for 
differentiating 
ISFT from AM 

Retrospective 
and specific 
patient 
population 

ML models aid in 
preoperative 
prediction and 
stratification of ISFT 

36 
Sundar et 
al., 2022 
[58] 

Customised gene panel Survival benefit 
from paclitaxel 

Random forest 
machine-
learning model 

Identification 
of first 
predictive 
biomarker for 
paclitaxel 
benefit in GC 

Based on 
specific trial 
data 

Machine-learning 
techniques identify 
gene signature for 
paclitaxel benefit in 
GC 

37 Sun et al., 
2022 [59] 

CT image analysis 
Prediction of 
colorectal liver 
metastases 

AI algorithms 
including 
logistic 
regression 
classifier 

LR classifier 
showed the 
highest 
prediction 
accuracy for 
CRLM 

Focused on 
colorectal 
cancer patients 

CT image texture 
features predict 
CRLM effectively 
using AI algorithms 

38 
Zhang et 
al., 2022 
[60] 

Clinical and non-clinical 
characteristics 

Early death of 
mCRC patients 

ML algorithms 
and 
nomograms 

Random 
forest model 
provided 
more clinical 
benefits than 
other models 

Based on SEER 
database data 

ML algorithms 
combined with 
nomograms 
effectively predict 
early death in mCRC 
patients 

39 
Fan et al., 
2022 [61] 

PET/CT and enhanced CT 
radiomics features 

Lymphovascular 
invasion status 

ML models 
including 
AdaBoost, LDA, 
LR 

Combined 
model (AUC 
up to 0.944) 
outperformed 
other models 

Retrospective, 
limited to 
gastric cancer 

ML models using 
radiomics features 
predict LVI in gastric 
cancer effectively 

40 
Ou et al., 
2022 [62] 

Clinical factors, blood 
tests 

Pathologic risk 
factors post RH 

Gradient 
Boosting 
Machine and 
other ML 
classifiers 

Accurate 
prediction of 
deep stromal 
infiltration 
and lymphatic 
metastasis 

Limited to 
early-stage CC 
patients 

Machine learning 
methods predict PRF 
in CC patients post 
RH effectively 

41 Luo Y et al., 
2023 [63] 

DWI-based radiomics 
and clinical data 

Futile 
recanalization 
despite successful 
recanalization 
(mRS 4-6) 

LASSO 
regression, SVM 

High AUC in 
training 
(0.897) and 
test (0.935) 
cohorts; 
better than 
clinical model 

Limited sample 
size and 
retrospective 
nature 

The model effectively 
predicts futile 
recanalization in 
ABAO patients 

42 
Huang J et 
al., 2022 
[64] 

Deep learning CEUS and 
clinical factors 

Aggressiveness of 
pancreatic 
neuroendocrine 
neoplasms 
(PNENs) 

SE-ResNeXt-50 
network 

Combined 
model 
showed 
strong 
discrimination 
(AUC 0.85 in 
test set); 
better than 
clinical model 
alone 

Limited to 
retrospective 
data; needs 
further 
validation in 
diverse 
populations 

Effective for 
preoperative 
prediction of PNEN 
aggressiveness 

43 
Yin P et al., 
2023 [65] 

Clinical and CT perfusion 
imaging data 

Delayed cerebral 
ischemia (DCI) and 
poor 3-month 
functional 
outcome 

KNN, LR, SVM, 
RF, CatBoost 

CatBoost 
optimal for 
predicting 
DCI and poor 
outcome; 
outperformed 
traditional 
clinical 
models 

Not specified 

ML models using 
clinical and CTP data 
are superior in 
predicting aSAH 
outcomes 
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44 
Zhang Z et 
al., 2023 
[66] 

Clinical and laboratory 
data within 24 hours of 
ICU admission 

28-day mortality 
Artificial neural 
network (NNET) 

NNET model 
had the 
highest AUC 
(0.837) for 
predicting 
mortality; 
outperformed 
existing 
scores like 
MELD and 
MELD-Na 

Based on 
retrospective 
data; requires 
external 
validation 

NNET model is 
superior in predicting 
28-day mortality in HE 
patients 

45 
Cheng M 
et al., 2023 
[67] 

CT-based radiological 
factors and clinical 
factors 

Risk of immune 
checkpoint 
inhibitor-related 
pneumonitis (ICI-P) 

CNN 

Nomogram 
combining 
CT-based 
radiological 
and clinical 
factors 
showed 
better 
prediction 
accuracy 

Limited sample 
size and 
retrospective 
nature 

Nomogram is a non-
invasive tool for early 
prediction of ICI-P in 
lung cancer patients 

46 
Kao YT et 
al., 2023 
[68] 

Diagnostic codes, 
medications, and 
laboratory data from 
EMRs 

1-year new-onset 
atrial fibrillation 
(AF) risk 

Decision tree, 
SVM, LR, 
Random Forest 

Random 
Forest model 
achieved an 
AUC of 0.74 
with high 
specificity; 
effective in 
differentiating 
AF risk in the 
next year 

Relies on 
retrospective 
EMR data; may 
not capture all 
relevant clinical 
details 

Targeted screening 
using EMRs can 
effectively predict 
incident AF risk in 
older patients 

47 
Saux P et 
al., 2023 
[69] 

Clinical and surgery-
related data 

BMI at 5 years post-
surgery 

Least absolute 
shrinkage and 
selection 
operator, 
Classification 
and regression 
trees 

Model 
provided 
accurate 
predictions of 
5-year weight 
loss 
trajectories 
post-surgery; 
incorporated 
in an 
interpretable 
web-based 
tool 

Retrospective 
analysis; 
variations in 
follow-up 
schedules 
among cohorts 

The model is 
internationally 
validated and 
effective for 
predicting individual 
5-year weight loss 
trajectories after 
bariatric surgery 

48 
Li J et al., 
2023 [70] 

Clinical and laboratory 
data, tumor 
characteristics 

Acute liver function 
deterioration 
(ALFD) after DEB-
TACE 

LASSO 
regression 

Nomogram 
demonstrated 
good 
discrimination 
(AUC 0.762 in 
training and 
0.878 in 
validation); 
identified FIB-
4 as an 
independent 
factor 

Single-center 
study; requires 
external 
validation 

The nomogram may 
improve clinical 
decision-making and 
surveillance protocols 
for HCC patients at 
high risk of ALFD after 
DEB-TACE 

49 
Faraone 
SV et al., 
2022 [71] 

Viloxazine extended-
release (viloxazine ER) 
treatment 

Response to 
treatment (≥50% 
reduction in ADHD 
symptoms) 

Lasso model 

Early 
improvement
s predicted 
treatment 
response at 
week 6 with 
high 
sensitivity and 
specificity 

Post-hoc 
analysis; limited 
to trial 
participants 

Consistency of 
viloxazine ER 
treatment effects 
across age groups 
confirmed 

50 
Zhang K et 
al., 2023 
[72] 

Clinical data and HE-
stained pathological 
images 

5-year overall 
survival (OS) in 
cervical cancer 
patients 

Lasso-Cox 
model 

Clinical-
pathomic 
model (C-
index 0.83) 
predicted 5-
year OS; 
outperformed 
pathomic and 
clinical 
models alone 

Retrospective 
data; limited to 
specific patient 
population and 
treatment 
modality 

The model may aid in 
the precision of 
personalised therapy 
for non-surgical 
cervical cancer 
patients 

51 
Cai ZH et 
al., 2023 
[73] 

Pelvic MRI 
Use of ≥3 linear 
stapler cartridges 
in DST anastomosis 

Mask R-CNN, 3D 
Convolutional 
Networks 

Integrated 
model 
showed 
higher 
accuracy and 

Limited to 
retrospective 
analysis and 
specific patient 
population 

MRI-based deep 
learning model can 
predict the need for 
multiple linear stapler 
cartridges in DST 
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AUC 
compared to 
clinical and 
image models 
alone 

anastomosis 
effectively 

52 
Wang Y et 
al., 2023 
[74] 

NHANES data (2007-
2018) Risk of heart failure 

Random Forest 
(RF) 

RF model 
demonstrated 
the best 
prediction 
performance 
with high AUC 

Based on 
survey data; 
may lack 
detailed clinical 
data 

ML models, especially 
RF, can accurately 
predict heart failure 
risk in patients with 
prediabetes or 
diabetes 

53 
Bao Z et 
al., 2021 
[75] 

Genotyping data 

Response to 
ketamine 
treatment (based 
on HAMD score 
change) 

Random 
Forests, SVM, 
other ML 
models 

SVM 
algorithm 
showed the 
best 
performance 
with high 
accuracy, 
precision, and 
sensitivity 

Limited sample 
size; focused on 
genetic 
predictors only 

GWAS-based 
machine learning 
approach can predict 
the treatment 
outcomes of 
ketamine in MDD 
patients effectively 

54 
Li P et al., 
2023 [76] Clinical data 

Postoperative 
infections in elderly 
patients 

Deep Learning 
Model 

Deep learning 
model 
demonstrated 
improved 
predictive 
accuracy for 
postoperative 
infections 

Observational 
data; further 
validation 
needed 

Deep learning models 
can assist in 
predicting 
postoperative 
infections in elderly 
patients effectively 

55 
Liu Y et al., 
2023 [77] 

MRI and clinical data 
Ordinal 90-day 
modified Rankin 
Scale (mRS) score 

Deep Learning 
Model 

Fused models 
outperformed 
clinical and 
imaging 
models alone 
in predicting 
ordinal mRS 
score and 
unfavorable 
outcome 

Limited to 
retrospective 
analysis and 
specific 
imaging data 

Fused imaging and 
clinical deep learning 
models enhance 
prediction of 90-day 
stroke outcome 

56 Xie N et al., 
2023 [78] 

Multiparameter MRI 

Prediction of 
extrapancreatic 
extension (EPE) in 
pancreatic cancer 

XGBoost, other 
ML classifiers 

XGBoost 
achieved high 
AUC values in 
both internal 
and external 
test sets 

Retrospective 
design; 
validation in 
larger datasets 
required 

Radiomics models 
can accurately predict 
EPE in pancreatic 
cancer patients, 
aiding in treatment 
decision-making 

57 
Chen X et 
al., 2023 
[79] 

Clinical data 
Likelihood of 
postoperative 
blood transfusion 

Logistic, MLP, 
XGBoost, RF, 
SVM 

All models 
performed 
well in 
predicting 
blood 
transfusion 
likelihood, 
with high AUC 
values in 
training and 
testing 
groups 

Single-center 
study; further 
validation 
required 

ML models have great 
potential in 
predicting the 
likelihood of blood 
transfusion after hip 
fracture surgery 

58 
Forrest LN 
et al., 2023 
[80] 

Behavioral and stepped-
care treatments 

Binge-eating 
reduction, 
abstinence, eating-
disorder 
psychopathology, 
weight loss 

Elastic Net, 
Random 
Forests, other 
ML models 

Machine-
learning 
models 
provided 
minimal 
advantage 
over 
traditional 
models in 
predictive 
accuracy 

Limited to trial 
participants; 
low predictive 
accuracy in 
both model 
types 

Different analytic 
approaches, including 
ML, reveal some 
predictors of BED 
treatment outcomes, 
but with limited 
accuracy 

59 Tan TH et 
al., 2021 [81] 

Clinical data from 
electronic health records 

Hospitalization, 
pneumonia, sepsis 
or septic shock, ICU 
admission, in-
hospital mortality 

Random Forest, 
XGBoost, 
Logistic 
Regression 

Models 
showed high 
AUCs for 
predicting 
various 
outcomes, 
integrated 
into hospital 
information 
systems for 
real-time 
assistance 

Limited to 
retrospective 
data; focused 
on influenza in 
older patients 

ML can assist in real-
time prediction of 
outcomes in older ED 
patients with 
influenza, aiding in 
decision-making 
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60 
Chandra 
RS et al., 
2023 [82] 

Clinical and image data 
from CATT trial 

Number of PRN 
injections of anti-
VEGF in two years 

SVM, Random 
Forest, XGBoost 

SVM model 
demonstrated 
high AUCs 
and MAE in 
predicting the 
number of 
injections, 
highlighting 
important 
predictive 
features 

Limited to 
participants in a 
specific clinical 
trial; further 
validation 
needed 

ML models using 
initial treatment data 
can predict long-term 
anti-VEGF demand 
for nAMD, aiding in 
treatment 
optimization 

61 
Jin Y et al., 
2023 [83] 

Clinical data, survival 
data 

First tumor relapse, 
secondary 
malignant tumor 
diagnosis, or death 

Random Forest, 
Logistic 
Regression 

RF model 
showed 
better 
specificity, 
sensitivity, 
and AUC 
compared to 
logistic 
regression 

Limited to 
retrospective 
data and 
specific patient 
population 

RF model is effective 
in predicting events 
among breast cancer 
patients with poor 
response to 
neoadjuvant 
chemotherapy 

62 
Su Z et al., 
2023 [84] 

Clinical indicators 
Pulmonary 
metastasis risk 

Multiple ML 
algorithms 

Developed a 
nomogram to 
predict risk of 
pulmonary 
metastasis in 
osteosarcoma 
patients 

Based on 
retrospective 
data, requires 
further 
validation 

Helps clinicians 
predict lung 
metastases risk in 
osteosarcoma and 
provide personalised 
treatment guidance 

63 
Liu Y et al., 
2023 [85] 

Clinical parameters 
Amputation-free 
survival (AFS) 

Random 
Survival Forest 
and others 

RSF algorithm 
developed the 
optimal 
model with 
high AUCs for 
predicting 
AFS 

Retrospective 
data and 
focused on a 
specific patient 
group 

RSF model effectively 
predicts AFS after first 
revascularization in 
PAD patients 

64 Wu Y et al., 
2023 [86] 

Clinical data, stone 
analysis 

Identification of 
infection stones in 
vivo 

SVM, MLP, DT, 
RFC, AdaBoost 

AdaBoost 
model 
showed 
strong 
discrimination 
in identifying 
infection 
stones (AUC: 
0.772) 

Retrospective 
design, limited 
to specific 
patient data 

Machine learning 
model can quickly 
identify infection 
stones in vivo with 
good predictive 
performance 

65 
Zhang K et 
al., 2022 
[87] 

Clinical data, CT features 

Malignancy 
prediction of solid 
nodules in multiple 
pulmonary nodules 

Extreme 
Gradient 
Boosting 
(XGBoost) 

PKU-ML 
model 
(AUC=0.838) 
outperformed 
models 
designed for 
single 
pulmonary 
nodules 

Limited to 
specific patient 
data, 
retrospective 
analysis 

PKU-ML model 
effectively predicts 
malignancy of solid 
nodules in multiple 
pulmonary nodules 
and single solid 
nodules 

66 
Tran QNN 
et al., 2023 
[88] 

Clinical data 
In-hospital 
mortality of lung 
cancer patients 

Logistic 
regression and 
others 

Developed a 
static 
nomogram 
and web app 
for stratifying 
lung cancer 
patients into 
high- and 
low-risk of in-
hospital 
mortality 

Limited to data 
from SEER 
database 

Model can assist in 
clinical planning for 
new lung cancer 
patients 

67 
Zhang H et 
al., 2023 
[89] 

Clinical and laboratory 
data 

N2 lymph node 
metastasis 
prediction 

ResNet18, 
LASSO, and 
others 

Deep learning 
model (AUC: 
0.83) 
outperformed 
radiomics 
model in 
predictive 
accuracy 

Limited to 
specific patient 
population, 
retrospective 
design 

Nomogram based on 
multiview radiomics, 
deep learning, and 
clinical features 
effectively predicts 
presurgical N2 
diseases in stage I-II 
NSCLC patients 

68 Ma X et al., 
2023 [90] 

CT images, clinical 
characteristics 

Lymph node 
metastasis 
prediction 

Swin 
Transformer 

DL signature 
(AUC: 0.948-
0.961) 
significantly 
outperformed 
clinical-
semantic 
model and 
radiomics 

Retrospective 
data, limited to 
lung 
adenocarcinom
a 

DL signature based 
on Swin Transformer 
offers important 
information in 
noninvasive 
mediastinal LN 
staging and 
individualised 
therapeutic options 



 
 

16 | P a g e  

signature in 
predicting 
lymph node 
metastasis 

69 Li D et al., 
2023 [91] 

Clinical data 90-day mortality 
risk prediction 

Lasso, RSF, and 
others 

Developed a 
nomogram 
with good 
predictive 
power for 90-
day risk of 
death in the 
target patient 
population 

Based on 
retrospective 
data from 
DRYAD 
database 

The nomogram 
provides an effective 
tool for predicting 90-
day mortality risk in 
the target patient 
population 

70 Le Y et al., 
2023 [92] 

Clinical data Overall survival 
prediction 

XGB, LR, RF, NB 

ML algorithms 
performed 
well in 
predicting 1-
year and 3-
year overall 
survival of 
patients with 
ccRCC-BM 

Limited to 
retrospective 
data from SEER 
database and a 
single center. 
limited external 
validation. 

ML models can 
positively impact 
clinical applications in 
predicting survival of 
patients with ccRCC-
BM 

71 
Zhang H et 
al., 2023 
[93] 

Clinical data from SEER 
and hospital database 

Death risk in NPC 
patients 

XGBoost, DT, 
LASSO, RF 

Identified risk 
factors such 
as age, race, 
gender, TNM 
stage; model 
accurately 
predicted risk 
of death in 
NPC patients 

Limited to 
retrospective 
analysis from 
specific 
databases 

AI-based model can 
accurately predict risk 
of death in NPC 
patients, aiding in 
treatment planning 
and patient 
counseling 

72 
Etter JF et 
al., 2023 
[94] 

Stop-Tabac smartphone 
app 

Smoking cessation, 
reduction, and 
relapse after 6 
months 

Machine 
learning 
algorithms 

Identified 
predictors 
such as 
tobacco 
dependence, 
app use 
frequency, 
and nicotine 
medication 
use; machine 
learning 
algorithms 
effectively 
predicted 
smoking 
behavior 
changes 

Limited to app 
users; may not 
generalise to 
broader 
population 

Machine learning can 
identify independent 
predictors of smoking 
behavior changes 
among app users, 
useful for app 
development and 
experimental studies 

73 Lyu Z et al., 
2023 [95] 

Clinical and laboratory 
data 

Risk of early 
neurological 
deterioration (END) 
after intravenous 
thrombolysis 

LR, KNN, SVM, 
RF 

SVM model 
showed the 
highest 
accuracy, 
specificity, 
and overall 
prediction 
ability in 
identifying 
risk of END 
after 
intravenous 
thrombolysis 

Limited to 
single-center 
data; needs 
larger, multi-
center 
validation 

Machine learning 
models can effectively 
predict the risk of 
END in AIS patients, 
aiding clinical 
decision-making for 
thrombolysis 

74 
Huang J et 
al., 2023 
[96] 

Electronic health records 28-day in-hospital 
mortality 

NB, xgboost, LR 

The xgboost 
model 
showed the 
best 
predictive 
performance; 
ML models 
can stratify 
patients into 
risk groups for 
medical 
disputes 

Based on data 
from a specific 
database; may 
not reflect 
general ICU 
population 

xgboost model 
effectively predicts 
mortality in elderly IS 
patients in the ICU, 
aiding in patient 
management and 
resource allocation 
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